Ergänzungsfach Sport
Gymnasium Bern-Kirchenfeld

Trainingslehre
Kraft

2. Semester 2012 Th. Glatzfelder, R. Rohner
Inhaltsverzeichnis

1 Einleitung ...2
 1.1 Die motorische Einheit ...3
 1.2 Der Muskelaufbau ..4
 1.3 Mechanik der Muskelfunktion ..5
 1.4 Muskelarten ..6
 1.5 Erscheinungsformen der Kraft ...7

2 Arten der Kraft ..8
 2.1 Maximalkraft ...8
 2.2 Schnellkraft ..9
 2.3 Reaktivkraft ...9
 2.4 Kraftausdauer ...9

3 Krafttraining ...10
 3.1 Wirkung des Krafttrainings ...10
 3.2 Trainingsmethoden für die Maximalkraft ...12
 3.2.1 Methode zur Muskelquerschnittsvergrößerung (Hypertrophie)12
 3.2.2 Methode zur Verbesserung der intramuskulären Koordination12
 3.2.3 Pyramidenmethode ..14
 3.3 Trainingsmethode für die Schnellkraft ..15
 3.4 Trainingsmethode für die Reaktivkraft ..16
 3.5 Trainingsmethode für die Kraftausdauer ..17
 3.6 Anpassung der Belastung ...18

4 Quellennachweis ..19
1 Einleitung

Aufgaben

1. Versuche, bei den untenstehenden Sportarten die speziellen Anforderungen an die Kraft zu beschreiben:

 - Hochsprung ..
 - Gewichtheben ...
 - Kunstturnen ...
 - Ski alpin ..
 - Boxen ...

 Sportarten mit Krafttraining
 ..
 ..

 Sportarten ohne Krafttraining
 ..
 ..
1.1 Die motorische Einheit

Die Gesamtheit der von einer motorischen Vorderhornzelle innervierten Muskelfasern wird dabei als motorische Einheit bezeichnet.

Die Grösse dieser motorischen Einheiten kann sehr unterschiedlich sein. Je differenzieter, d.h. feinabgestuft der Muskel sein muss, desto mehr motorische Einheiten besitzt er. So verfügt der äussere Augenmuskel über 1740, der zweiköpfige Armmuskel (Bizeps) hingegen nur über 774 motorische Einheiten.

Umgekehrt ist bei feinmotorischen Muskeln die Zahl der von einer Nervenfaser innervierten Muskelfasern geringer als bei grobmotorischen, auf Kraftentfaltung ausgerichteten Muskeln: die Augenmuskeln steuern jeweils nur 100-300 Muskelfasern, diejenigen von grossen und kräftigen Muskeln steuern bis zu 2000 Muskelfasern.¹

¹ Weineck 2010, 156f / Wikipedia, Motorische Einheit, 2013
1.2 Der Muskelaufbau

Eine Muskelzelle wird auch als Muskelfaser bezeichnet. Dicht aneinandergelegt bilden viele Muskelfasern den Skelettmuskel (Abb. 3). Muskelfasern können bis zu 18 cm lang sein. Im Gegensatz zu einer normalen Körperzelle enthalten sie nicht nur einen, sondern eine grosse Anzahl von Zellkernen. Eine Muskelfaser wiederum besteht aus mehreren 100 bis mehreren 1000 parallel verlaufenden Fibrillen, den so genannten Myofibrillen (Abb. 3).

Abb. 3 Darstellung der Struktur des Skelettmuskels (Weineck 2010, 141)

Die Myofibrillen schliesslich setzen sich aus Tausenden von so genannten Muskelfilamenten zusammen. Dabei handelt es sich um Eiweissstrukturen, die man in zwei Gruppen einteilt: in die dünnen
Aktinfilamente und die dicken Myosinfilamente. Im Myosinfilament sind die lang gestreckten Moleküle so miteinander verdrillt, dass die Köpfcchen seitlich aus dem Filament herausragen.

1.3 Mechanik der Muskelkontraktion

Myosin ist das wichtigste Protein bei der Muskelkontraktion. Aufgrund seiner Struktur – strangförmig mit seitlich herausragenden Köpfchen – ist es verantwortlich für die Mechanik der Muskelkontraktion.

Beim Kontraktionsvorgang binden sich die Myosinköpfe an die Aktinfilamente und ziehen diese durch eine Kippbewegung im Halsabschnitt des Myosins in Richtung Sarkomer-Mitte. Die dargestellte „Ruderbewegung“ wiederholt sich bis zu 50mal pro Sekunde, woraus schliesslich eine Verkürzung des Sarkomers um etwa ½ Tausendstelmillimeter resultiert.

Die Gesamtmuskelverkürzung ist die Folge der Verkürzung unzähliger hintereinander geschalteter Sarkomere durch das teleskopartige ineinandergleiten der Aktin- und Myosinfäden, deren Länge sich dabei jedoch nicht verändert.

Die Energiequelle für die Ruderbewegung ist ATP, das am Myosinkopf zur Verfügung steht.²

Abb. 4 Schematische Darstellung der Muskelkontraktion

1 = Ausgangsstellung vor Auslösung einer Kontraktion.
2 = Bindung des Myosinkopfes an das dünne Aktinfilament.
3 = Kippbewegung des Myosinkopfes.
4 = Lösung des Myosinkopfes und Wiedereinnahme der Ausgangsstellung

² Weineck 1998, 36
1.4 Muskelfasertypen

Der menschliche Muskel ist je nach seiner Funktion mosaikartig aus verschiedenen Muskelfasern zusammengesetzt, welche aufgrund ihrer unterschiedlichen Kontraktionsgeschwindigkeit und Ermüdungsresistenz typisiert werden können.

Man unterscheidet zwei Haupttypen von Muskelfasern:

1. die weisse, dicke und schnelle Muskelfaser. Sie wird auch als FT-Faser (fast twitch = schnell zuckende Faser) bezeichnet. Sie ist vor allem bei schnellkräftigen und intensiven Muskelbeanspruchungen in Aktion.

Die verschiedenen Fasertypen können mit Färbeethoden dargestellt werden. Abb. 5 zeigt die Muskelfaserverteilung aus der Oberschenkelmuskulatur eines guten Sprinters (a) und eines Radrennfahrers (b) – als Extrembeispiele für einen Schnellkraft- bzw. Ausdauersportler.

Abb. 5 ST- und FT-Faserverteilung im Bereich der seitlichen Oberschenkelmuskulatur eines Sprinters (a) und eines Radrennfahrers (b). FT-Fasern = weiss, ST-Fasern = schwarz (Weineck 2010, 617)

Die Anlage bzw. der prozentuale Anteil der verschiedenen Muskelfasern ist genetisch festgelegt. Im überwiegenden Teil der Bevölkerung finden sich etwa gleich grosse Prozentsätze; im Einzelfall aber kann die genetische Verteilung 90:10 oder 10:90 betragen. Diese Personen sind einseitig begünstigt. Beim geborenen Sprinter überwiegen die FT-Fasern, beim geborenen Ausdauerleister (Marathonläufer) die ST-Fasern.

Carl Lewis soll als grösster Sprinter und Springer aller Zeiten einen Anteil von über 90% an schnell zuckenden Muskelfasern in seiner Muskulatur aufweisen!

Aufgaben

3. Auf welchen sportbiologischen Erkenntnissen beruht die Redensart „Zum Sprinter wird man geboren, zum Läufer wird man gemacht“?

1.5 Erscheinungsformen der Kraft

Abb. 6 Viktor Klimenko an den Ringen (Weineck, Optimales Training, 1980)

Schliesslich ist eine Muskeltätigkeit noch danach zu kennzeichnen, ob sie einen Widerstand überwindet, z.B. beim Abspringen, oder ob sie auf eine einwirkende Kraft bremsend wirkt, wie z.B. bei der Landung nach einem Sprung. Im ersten Fall spricht man von positiv dynamischer oder auch konzentrischer Kontraktionsform des Muskels, im zweiten Fall von negativ dynamischer oder auch exzentrischer.

<table>
<thead>
<tr>
<th>Kontraktionsform</th>
<th>Beispiele aus Sportarten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konzentrisch</td>
<td>...</td>
</tr>
<tr>
<td>• Widerstand überwindende Muskelarbeit</td>
<td>...</td>
</tr>
<tr>
<td>• Der Muskel verkürzt sich.</td>
<td>...</td>
</tr>
<tr>
<td>Exzentrisch</td>
<td>...</td>
</tr>
<tr>
<td>• Einer Kraft nachgebende Muskelarbeit</td>
<td>...</td>
</tr>
<tr>
<td>• Der Muskel verlängert sich.</td>
<td>...</td>
</tr>
<tr>
<td>Isometrisch</td>
<td>...</td>
</tr>
<tr>
<td>• Statische Arbeit, Haltearbeit</td>
<td>...</td>
</tr>
<tr>
<td>• Die Muskellänge bleibt gleich.</td>
<td>...</td>
</tr>
</tbody>
</table>

Abb. 7 Arbeitsweisen und Kontraktionsformen der Muskulatur (nach Grosser / Ehlenz / Griebl / Zimmermann, 1994, 11)

2 **Arten der Kraft**

2.1 **Maximalkraft**

Die Maximalkraft stellt die höchstmögliche Kraft dar, die das Nerv-Muskel-System bei maximaler Anspannung auszuüben vermag.

Die Maximalkraft ist von folgenden Komponenten abhängig:

- Vom Muskelquerschnitt
- Von der intramuskulären Koordination (Koordination innerhalb des Muskels: Anzahl der Muskelfasern, die gleichzeitig aktiviert werden können)
- Von der intermuskulären Koordination (Koordination zwischen den Muskeln, die bei einer gegebenen Bewegung zusammenarbeiten)

Über jede dieser drei Komponenten kann eine Verbesserung der Maximalkraft erreicht werden.4

4 Weineck 2012, 373
2.2 Schnellkraft

Die Schnellkraft beinhaltet die Fähigkeit des Nerv-Muskel-Systems, den Körper, Teile des Körpers (z.B. Arme, Beine) oder Gegenstände (z.B. Bälle, Kugeln, Speere, Disken, etc.) mit maximaler Geschwindigkeit zu bewegen.

Bei ein und derselben Person kann dabei die Schnellkraft in Armen und Beinen ganz verschieden sein. Ein Sportler (z.B. ein Boxer), kann über schnelle Arm- aber langsame Beinbewegungen verfügen.

Zwischen Maximalkraft und Schnellkraft besteht folgender Zusammenhang: Nimmt die zu überwindende Last zu, dann nimmt die Bedeutung der Maximalkraft für die Schnellkraft zu.5

2.3 Reaktivkraft

Die Reaktivkraft ist die Fähigkeit, in einem Dehnungs-Verkürzungs-Zyklus (DVZ) einen hohen Kraftimpuls zu erzeugen. In vielen Sportarten kommen Muskelaktionen vor, bei denen einer konzentrischen Aktion eine exzentrische Aktion (eine kurze Bremsphase) vorausgeht. Es kommt dabei zunächst zu einer kurzen exzentrischen Dehnung der Muskulatur, dann zur konzentrischen Phase, in die die gespeicherte elastische Spannungsenergie aus der vorhergehenden Phase eingeht.6

Beispiele

- Wurfbewegungen: Die Wurfschulter geht der Abwurfbewegung des Arms voraus, die Brust und Schultermuskeln werden gedehnt und kontrahieren sich dann explosiv.7

Die Fähigkeit, Spannungsenergie aufzunehmen und wieder abzugeben, hängt von der Elastizität des Sehnengewebes ab. Je kräftiger die Sehne und das Bindegewebe eines Muskels ist, umso mehr Energie kann im Moment der exzentrischen Dehnung gespeichert und in der konzentrischen Phase wieder freigesetzt werden.8 Dieses elastiziätst- und Innervationsverhalten wird auch als reaktive Spannungsaktivität9 bezeichnet und ist trainierbar.

2.4 Kraftausdauer

Im Leistungssport wird der Begriff der Kraftausdauer in der Regel gebraucht, wenn Krafteinsätze realisiert werden, welche über 30% der Maximalkraft liegen und wenn der Energiebedarf überwiegend durch den anaeroben Stoffwechsel gedeckt wird.

5 Weinkeck 2010, 374-377
6 Grosser/Starischka 1998, 43
7 Hegner 2009, 130
8 Weinkeck 2010, 379
9 Grosser/Starischka 1998, 43
Die Kraftausdauer wird also oft mit der anaeroben Kapazität und der Laktattoleranz in Verbindung gebracht.10

<table>
<thead>
<tr>
<th>Aufgaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Finde für jede der oben beschriebenen Kraftarten 2 typische Sportarten.</td>
</tr>
<tr>
<td>5. Erläutere anhand eines Beispiels die Aussage aus dem Skript S. 9: „Nimmt die zu überwindende Last zu, dann nimmt die Bedeutung der Maximalkraft für die Schnellkraft zu.“</td>
</tr>
</tbody>
</table>

3 Krafttraining

3.1 Wirkung des Krafttrainings

Intramuskuläre Koordination

Die Steigerung der intramuskulären Koordination ist auf eine verbesserte Innervation zurückzuführen, d.h. es können bei einer willkürlichen Kontraktion mehr Muskelfasern gleichzeitig zur Kontraktion gebracht werden (Abb. 8). Durch eine Verbesserung der intramuskulären Koordination ist somit eine Kraftzunahme ohne Erhöhung der Muskelmasse und des Gewichts möglich.

Intermuskuläre Koordination

Durch eine verbesserte intermuskuläre Koordination arbeiten die Muskeln effizienter und ökonomischer. Die Abb. 9 zeigt, dass ein trainierter Sportler mit seiner entwickelten Technik nicht nur die rele-

10 Hegner 2009, 131
vanten Muskeln aktiviert, sondern diese im Vergleich mit einem untrainierten Sportler auch gezielter einsetzt.

Abb. 9 Die Muskelaktivierung bei einem untrainierten (links) und trainierten (rechts) Kraulschwimmer (Weineck 2010, 398)

Aufgabe

Hypertrophie (Muskelquerschnittszunahme)

Die Kraft eines Muskels hängt vor allem von seinem Querschnitt ab. Pro cm² kann ein Muskel etwa 6 kg heben. Eine Erhöhung des Querschnitts bedeutet deshalb auch eine Erhöhung der Kraft.

Die Querschnittszunahme kommt durch eine Verdickung jeder einzelnen Muskelfaser, bzw. durch Myofibrillenvermehrung zustande. Je nach Intensität der Muskelbeanspruchung (Höhe des Gewichts) werden dabei unterschiedliche Muskelfasern angesprochen. Bei geringen Belastungen werden die dünnen, langsamen ST-Fasern beansprucht, erst ab 30% der Maximalkraft schalten sich die dicken, schnellen Muskelfasern kontinuierlich zu.¹¹

¹¹ Weineck 2010, 398f
3.2 Trainingsmethoden für die Maximalkraft

3.2.1 Methode zur Muskelquerschnittsvergrösserung (Hypertrophie)
Für eine Muskelmassenzunahme haben sich Belastungen als optimal erwiesen, die maximal zehn Wiederholungen erlauben (Abb. 10). Wichtig ist, dass das Krafttraining bis zur Erschöpfung durchgeführt wird, d.h. dass in jeder Serie nach der letzten Wiederholung keine weitere vollständige Bewegung mehr ausgeführt werden kann.

Hypertrophiemethode

- Last: 75 - 85 % der Maximalkraft
- Wiederholungen: 8-12
- Pause: 2 Min.
- Serien:
 - Fitnessbereich: 3-5
 - Leistungssport: 5-8

3.2.2 Methode zur Verbesserung der intramuskulären Koordination
Für eine Verbesserung der intramuskulären Koordination müssen Belastungen gewählt werden, die maximal 1-5 Wiederholungen zulassen. Die Kraftzunahme geschieht hier nicht durch eine Muskelvergrösserung, sondern durch eine größere Anzahl von Muskelfasern, die gleichzeitig aktiviert werden. Wegen der sehr kurzen Wiederholungszahlen muss die Zahl der Serien erhöht werden, damit der Muskel insgesamt eine bestimmte Anzahl von Kontraktionen erfährt.

Da bei dieser Methode koordinative Verbesserungen angestrebt werden, muss die Pausendauer deutlich länger als bei der Hypertrophiemethode sein. Bei intensiven Kräftexsäten geschieht die Ermüdung vor allem im Bereich der Muskelnervation.\(^\text{13}\) Erfolgt bei zu kurzer Pause die nächste Belastung

\(^\text{12}\) Grosser/Starischka 1998, 67
\(^\text{13}\) Ehlenz/Grosser/Zimmermann 1998, 51
zu früh, kann der Muskel nicht maximal innerviert werden. Der Reiz für eine Verbesserung der intramuskulären Koordination bleibt damit aus. Diesem Aspekt der Pausengestaltung - der Wiederherstellung der vollen Funktionsfähigkeit der Muskelregung14 - muss beim Training der Schnellkraft und der Reaktivkraft, wo die intramuskuläre Koordination ganz entscheidend verbessert wird, Rechnung getragen werden.

Methode der intramuskulären Koordination (IK)15

<table>
<thead>
<tr>
<th>Last:</th>
<th>90 – 100 % der Maximalkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiederholungen:</td>
<td>1-5</td>
</tr>
<tr>
<td>Pause:</td>
<td>3-5 Minuten</td>
</tr>
<tr>
<td>Serie:</td>
<td>5-12 (ca. 30 Einzelbelastungen pro Muskel)</td>
</tr>
</tbody>
</table>

14 Grosser/Starischka 1998, 51
15 Grosser/Starischka 1998, 70
3.2.3 **Pyramidenmethode**

Die Pyramidenmethode stellt die Vereinigung der beiden grundsätzlichen Belastungsgestaltungen für die Maximalkraftentwicklung dar: Es werden Serien mit vorrangiger Hypertrophiewirkung (an der Pyramidenbasis) und Serien mit vorrangiger IK-Wirkung (in der Pyramiden spitze) absolviert (Abb. 11).

Pyramidenmethode

<table>
<thead>
<tr>
<th>Last:</th>
<th>75 – 100 % der Maximalkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiederholungen:</td>
<td>1 – 12</td>
</tr>
<tr>
<td>Serien:</td>
<td>1-10 (je nach Belastungshöhe und Leistungsniveau)</td>
</tr>
<tr>
<td>Pause:</td>
<td>1-5 Minuten (je nach Belastungshöhe)</td>
</tr>
</tbody>
</table>

![Pyramide mit Lastenangaben](image)

Abb. 11 Veränderung der Belastungshöhe und der Wiederholungszahl beim Pyramidentraining (nach Grosse/Starischka 1998, 73)

Aufgaben

1. **Im Zustand der Hypnose vermögen Untrainierte ihre Maximalkraft in höherem Masse zu steigern als Trainierte. Wie ist das zu erklären?**

2. **Zwei Sportler haben im Bizeps den gleichen Muskelquerschnitt. Sind sie auch gleich kräftig, d.h. haben sie die gleiche Maximalkraft?**

3. **Bodybuilder und Gewichtheber trainieren beide mit schweren Gewichten und haben dementprechend eine gut entwickelte Muskulatur. Ihre Zielsetzung ist jedoch völlig verschieden. Kannst Du Dir vorstellen, wie sich die Leistungsfähigkeit ihrer Muskulatur unterscheidet?**

4. **Bei der Zielsetzung „Muskelquerschnittvergrößerung“ ist es wichtig, dass man nicht in jedem Training die Übungen wechselt, sondern während einiger Trainingseinheiten dieselben Übungen beibehält. Erkläre, welche sportbiologische Gesetzmäßigkeit hier zugrunde liegt.**
3.3 Trainingsmethode für die Schnellkraft

Mit einer Zunahme der Maximalkraft kann eine gleich bleibende Last schneller bewegt werden. Deshalb ist beispielsweise in der Leichtathletik, wo entweder das eigene Körpergewicht oder ein Gerät explosiv bewegt werden muss, Krafttraining ein wesentlicher Trainingsbestandteil.

Im Schnellkrafttraining wird gezielt die intramuskuläre Koordination verbessert. Die Kontraktionsgeschwindigkeit des Muskels wird jedoch durch die zu befördernde Last stark beeinflusst. Bei hohen Widerständen, wie sie zur Verbesserung der intramuskulären Koordination nötig sind, kann der Muskel nur eine geringe Kontraktionsgeschwindigkeit erreichen (Abb. 12). Wird lange in diesem Bereich trainiert, gewöhnt sich der Muskel an eine bestimmte Kontraktionsgeschwindigkeit. Der Sportler verfügt dann zwar über mehr Kraft, aber über eine geringere Kontraktionsgeschwindigkeit seiner Musculatur.

Für das Training der Schnellkraft haben sich Lasten von 30-60% der Maximalkraft bewährt. In diesem Bereich erbringt der Muskel die beste Leistung (Kraft mal Geschwindigkeit). Es ist ein Kompromiss, bei dem die Last für den Muskel einen genügenden Anreiz zur Verbesserung der intramuskulären Koordination darstellt und gleichzeitig eine bestimmte Bewegungsgeschwindigkeit möglich ist.

Schnellkraftmethode

<table>
<thead>
<tr>
<th>Bewegungsausführung:</th>
<th>exzentrisch langsam – konzentrisch schnell bis explosiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last:</td>
<td>30-60% der Maximalkraft</td>
</tr>
<tr>
<td>Wiederholungen:</td>
<td>6-8 (höchstmögliche Geschwindigkeit darf nicht abfallen)</td>
</tr>
<tr>
<td>Pause:</td>
<td>3-5 Minuten</td>
</tr>
<tr>
<td>Serien:</td>
<td>3-5</td>
</tr>
</tbody>
</table>
Beispiel

Abb. 13 Kniebeugen mit der Langhantel
Ausführung: exzentrisch langsam in die Kniebeuge gehen, konzentrisch schnell bis explosiv strecken (Hegner 2009, 163)

Variation
reaktiv-plyometrisch (vgl. Kap. 3.4): sich in die Kniebeuge fallen lassen und dann explosiv strecken oder sogar abspringen

3.4 Trainingsmethode für die Reaktivkraft

<table>
<thead>
<tr>
<th>Plyometrische Methode, Niedersprung-Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprunghöhe: ist so zu bemessen, dass schnelle Umkehr und Explosivität gewährleistet ist.</td>
</tr>
<tr>
<td>Wiederholungen: 8-10, mit ca. 5 sec. Pause zwischen den Wiederholungen</td>
</tr>
<tr>
<td>Pause: Serienpause 5-8 Minuten</td>
</tr>
<tr>
<td>Serien: 3-5</td>
</tr>
</tbody>
</table>

Bei Anwendung der Niedersprung-Methode ist auf allmähliche Belastungssteigerung zu achten. Bezüglich der Beinstreckmuskulatur stehen deshalb anfangs Hüpfübungen (beidbeinig, einbeinig), später Sprungübungen (z.B. Sprünge über niedrige Hürden), dann schliesslich Niedersprünge von erhöhtem Niveau auf dem Programm.17

16 GROSSER/STARISCHKA 1998, 76
17 GROSSER/STARISCHKA 1998, 77
3.5 Trainingsmethode für die Kraftausdauer

Für die Kraftausdauer ist neben der Maximalkraft bereits die laktazide Energiebereitstellung mit anaerobem Glykogenabbau der leistungsbestimmende Faktor. Die Belastungshöhe (ab 30% der Maximalkraft) erhöht den Muskelinnendruck und führt zu einem eingeschränkten Blutfluss.

Intensive Intervallmethode

<table>
<thead>
<tr>
<th>Last:</th>
<th>50-75 % der Maximalkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer:</td>
<td>30-45 Sekunden</td>
</tr>
<tr>
<td>Pause:</td>
<td>10-30 Sek</td>
</tr>
<tr>
<td>Serie:</td>
<td>2 – 4 Durchgänge in einem Circuit von 6-8 Stationen. Zwischen den einzelnen Durchgängen kann eine Pause von 1-3 Min. eingeschaltet werden</td>
</tr>
</tbody>
</table>

Die klassische Anwendung der obigen Methode ist das Zirkel- oder Circuittraining, bei dem verschiedene Stationen nacheinander absolviert werden müssen. Die Übungen werden im Allgemeinen so angelegt, dass bei aufeinander folgenden Übungen unterschiedliche Muskelgruppen belastet werden, sodass die jeweils unbelasteten Muskeln sich während der Übungen für andere Körperregionen leicht regenerieren können.
3.6 Anpassung der Belastung

Mit zunehmenden Lasten steigt die Verletzungsgefahr. Es ist deshalb sinnvoll, den Körper langsam an hohe Belastungen hinzuführen.

Will ich z.B. die Sprungkraft verbessern, dann ist es wenig ratsam, sofort mit einem Niedersprung-Training zu beginnen, obwohl es die größten Verbesserungsrate ermöglicht. Ein sinnvoller Aufbau des Krafttrainings sieht hier folgendermassen aus:

1. Muskelfaserquerschnittsvergrösserung
2. Verbesserung der intramuskulären Koordination zur Ausschöpfung des gewonnenen Potentials
3. Training der Schnellkraft und Reaktivkraft

Ein spezielles Training mit grosser Belastung des Körpers erfolgt also jeweils auf der Basis eines Trainings zur Muskelquerschnittsvergrösserung. Im Fitness- und Breitensport, wo weniger der Leistungsaspekt als vielmehr der gesundheitliche und ästhetische (gute Figur) Wert eines Krafttrainings im Vordergrund steht, wird meist ganz auf ein Training der intramuskulären Koordination verzichtet.

Aufgaben

11. Wann sollte ein Hochspringer im Krafttraining die Methode der Muskelquerschnittsvergrösserung anwenden, und welche Gefahren kann dieses Training für ihn mit sich bringen?
12. Wieso sind unter den leichtathletischen Werfern die Kugelstosser oft die grössten Muskelpakete und die Speerwerfer – vergleichsweise - weniger muskulös?
4 Quellenachweis

Literatur
- Hegner, J: Training fundiert erklärt. Ingold Verlag Magglingen 2009

Titelbild
http://www.nabogass.de/transparente-bilder/galerie-2